

```
<110> KAKEFUDA, GENICHI
    KOOP, HANS-ULRICH
    STURNER, STEPHEN
    ZHEN, RUI-GUANG
```

<120> CYANOBACTERIAL NUCLEIC ACID FRAGMENTS ENCODING PROTEINS
USEFUL FOR CONTROLLING PLANT TRAITS VIA NUCLEAR OR
PLASTOME TRANSFORMATION
$<130>$ BASF 100,100 PRV
$<140\rangle 09 / 893,033$
<141> 2001-06-27
<150> 60/214,705
<151> 2000-06-27
<160> 19
<170> PatentIn Ver. 2.1
<210> 1
<211> 33
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Primer
<400> 1
cgaattccet ggtagcattt aatacaaatt ggc
<210> 2
<211> 33
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Primer
<400> 2
cgcataagct ttgcagatgg agacggtttg ggc
<210> 3
<211> 1735
<212> DNA
<213> Synechocystis sp.
<400> 3
ccctggtagc atttaataca aattggctat cttggcaaag tccccogaaa tattacgaaa 60
cgtaaagtat aataacaatc aacctgtaaa ccccaaatgc cttagcgaga cagtaaccca 120
tgcgcgttgt gatcgccgga gccggattag ccggcctagc ctgtgccaaa tacttagccg 180
atgcgggctt tacccccgtc gtcttggaac gtagggatgt attaggcggg aagatcgccg 240
cgtggaaaga tgaggacgga gattggtacg aaaccggcet acacattttt tttggggcet 300

RECEIVED

NOV 062003


```
<210> 4
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Primer
<220>
<221> modified_base
<222> (3)
<223> a, 9, c or t
<220>
<221> modified_base
<222> (6)
<223> a, g, c or t
<220>
<221> modified_base
<222> (12)
<223> a, g, c or t
<400> 4
ggnacngayg cnttycarga
```

```
<210> 5
```

<211> 18
<212> DNA
<213> Artificial Sequence

```
<220>
<223> Description of Artificial Sequence: Primer
<220>
<221> modified_base
<222> (10)
<223> a, g, c or t
<220>
<221> modified_base
<222> (13)
<223> a, g, c or t
<400> 5
ytsccaytgn cknaccat
```

<210> 6
<211> 1959
<212> DNA
<213> Synechocystis sp.
<220>
<221> modified_base
<222> (1843)
<223> a, t, c, g, other or unknown
<400> 6
gccataggag cccatcgccg attgagttca aattagaagc acttagccta cgcttcctaa 60
accgattgtc cagtggttgc atcaattcct aatcccaaaa caaatttcct gaaaactgtt 120
cctagccaac ggcaaaccgg ggcttatatc ctgatggata gcctgaaacg ccatggggtc 180
aaacacattt ttggctatcc cggcggggca attttgceca tctatgatga actgtaccgc 240
tttgaagcgg cgggggaaat tgagcatatt ttggtgcgcc atgaacaagg agcttcccat 300
gcggcggatg ggtatgccag agccacaggt aaagtgggag tttgtttcgg tacatctgga 360
ccaggggcga ctaacttggt gaccggcatt gccaatgccc atttggactc ggtgcccatg 420
gtggtgatta ctggagaggt gggccgtgcc atgattggta gcgatgcttt ccaggaaatt 480
gacatttttg gcatcacctt accgatcgtt aagcactcct atgtggtacg tagtgcggcg 540
gatatggctc gcattgttac tgaggctttc catcttgcta gcaccggtcg tcccgggceg 600
gttttgatcg atattcccaa ggatgtgggc ttagaagaat gtgagtacat tcccctcgac 660
cccggtgacg ttaatctacc gggttatcgc cccacggtta aaggtaatcc ccgacaaatt 720
aatgcggcat tgcaattgtt ggagcaggcc agaaatccet tgctctacgt agggggaggg 780
gcgatcgccg ccaatgccca tgcccaggtg caggaatttg c
gtaacaacca ccctgatggg aattggggct tttgacgaaa
atgttgggta tgcatggcca ccgctatgcc aactttgccg
attgcagtgg gggcccgttt cgacgaccgg gtaactggca
cgcgccaaag taattcacat tgacatcgac ccggcggagg
gatgtgccca ttgtggggga tgtacgccat gttttagaac
gaattggatt accecaccca tccccatacc acccaggcat
tggcggaccg attaccccct ccaggtgccc cactatgagg
gtagtacacg aattggtcg ccaggccccc gatgcctact
caccaaatgt gggcggccea gtttttgaac aatggccccc
ggcttgggta cgatgggctt tggtttacct gccgccatgg
gacgagcggt catttgcatc agtggagatg ccagcttcca
gaaccctagc ccagtacgac atccaggtta aaactattat
ggatggtgcg tcagtggcaa caaactttct acgaagaacg
cccagggcat gccagacatt aatctcctct gtgaagccta
tgcgcaagcg ggaagatttg gccccggcga tcgccgaaat
tggtgatgga tgtggtggtc aaaaagatg aaaactgtta ccctatgatt gccccoggca 1800

```
tgagtaatgc ccaaatgcta ggtttaccgg aagtgccggt acnggacaat ggtccccgga 1860
tggtggagtg caaccattgc caaacccaaa atttcatcac ccatcgtttc tgttctggtt 1920
gtggagccaa actctaaccc ataagccaaa attgaattc 1959
<210> 7
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Primer
<400> 7
attgacattt ttggcatc
```

<210> 8
<211> 19
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Primer
<400> 8
tatccgccgc actacgtac
<210> 9
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Primer
<400> 9
caggggcgac taacttggtg ac
<210> 10
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Primer
<400> 10
accgctatgc caactttgcc gt

```
<210> 11
<21l> 22
<212> DNA
<213> Artificial Sequence
```

```
<220>
<223> Description of Artificial Sequence: Primer
<400> 11
ggaggatagt acacgaaatt gg
<210> 12
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Primer
<400> 12
aaatcttccc gcttgcgcac ag 22
<210> 13
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Primer
<400>. 13
ccaatttcgt gtactacctc ctg
<210> 14
<21l> 21
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Primer
<400> 14
aaagtgggag tgggggacga a
<210> 15
<21l> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Primer
<400> 15
cggtggaatt ttaccccaat gg
```

```
<210> 16
```

<210> 16
<211> 23

```
```

<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Primer
<400> 16
ggccctaaaa cttggattcc agg
<210> 17
<211> 565
<212> DNA
<213> Synechocystis sp.
<400> 17
gtggaatttt accccaatgg ccaccggcga tcgccttctt tgccccccat gaaacacacc 60
ctctctgttt tagttgaaga tgaagccgga gtgctaaccc gcattgccgg actatttgcc 120
cgccgtggtt ttaacattga gagcttggcg gtggggtcgg cggaacaggg ggacgtttcc 180
cgcatcacca tggtggtgcc gggggatgag aacaccatcg aacaactgac caagcaactc 240
tacaagttgg ttaacgtaat taaagtacag gacatcaccg aaactccctg tgtggaaagg 300
gaattgatgc tggtgaaggt gagcgccaat gcccctaacc gagcggaagt gattgagcta 360
gcccaggtat tcogggccog cattgtggat atctccgaag acaccgtcac catcgaatgg 420
tgggggaccc gggtaaaatg gtagcaatcc tccagatgtt ggccaagttg gcattaaaga 480
ggtggctcga acgggcaaaa ttgctttggt gcgggaatcc ggcgtcaata cggaatatct 540
gaaatccctg gaatccaagt tttag 565
<210> 18
<21l> 25
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Primer
<400> 18
ggctgatatc ctgatggata gcctg
<210> 19
<211> 30
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Primer
<400> 19
ttggcttacc ggttagagtt tggctccaca

